INTRODUCTION
TO
GAME DESIGN

&
PROGRAMMING

FROM ZERO TO HERO

Introduction To Game Design & Programming

Introduction To Game Design
&
Programming

In

GameMaker Studio 2
©2019 Ben Tyers

Introduction To Game Design & Programming

GameMaker
studio =

LearnGameMakerStudio.com

Introduction To Game Design & Programming

Special Thanks to The Following, Who Pre-Ordered This Project & Made It Possible:
Michat Kaminski

Corey Cuhay

Honey

Pedro Santos

Mark Porter

Dean Radcliffe

Mickey Everett

Vasco

Mike Cowel

Gaven Renwick

Thanks Also to The Following People:
Yellow Afterlife — Thanks for your help
Nathan Brown

Loukas Bozikis

Alesia Buonomo

Kehran Carr

Arik Chadima

Rom Haviv

Zachary Helm

Introduction To Game Design & Programming

ISBN: 9781795199537
Copyright 2019 © Ben Tyers
First Edition

If you find any issues of problems with this book (such as omissions or mistakes) please drop me an email:

Ben@LearnGameMakerStudio.com

Educational Use

| am more than happy the this or material from it being used in an educational setting, such as schools or

clubs. As an educator, | am sure you appreciate how much effort and time goes into making a book such as

this, therefore | ask that one copy is purchased (ebook or paperback) for every 10 students using it. If you
have any questions, please email:

Ben@LearnGameMakerStudio.com

Introduction To Game Design & Programming

ACKNOWLEDGMENTS

Graphics In Main Chapters: GameDeveloperStudio.com
All Audio In Main Chapters: Soundimage.org
Assets are not needed to enjoy this book

If you wish to make the game covered in this book, you can access assets from the above
sites.

No assets are included with this book project, except for Chapter 7 Introduction, which is
optional, and the appendix.

Chapter 7 Introduction Project:
Buttons: DaButtonFactory.com
Heart: OpenGameArt.org cdgramos ccO
Monster: OpenGameArt.org bevouliin.com cc0
Appendix 4 Cloud BananaOwl / opengameart.org CC-BY 3.0
Appendix 4 Gun sight Lucian Pavel / opengameart.org CCO
Appendix 6 Brick and ball Zealex / opengameart.org CCO
Appendix 7 Rotating coin Puddin / opengameart.org CCO
Appendix 7 Character rileygombart / opengameart.org
Appendix 7 Horse reivaxcorp / opengameart.org CC-BY 3.0
Appendix 9 Audio http://soundimage.org
Appendix 12 Songs http://soundimage.org
Appendix 13 Car sheikh_tuhin!
Rock - Jasper / OpenGameArt.org CCO
Appendix 15 Bird bevouliin.com / OpenGameArt.org CCO
Appendix 20 Chess Sprites: mr0.0nerd : https://2dartforgames.wordpress.com/
Appendix 21 Crosshair: Red Eclipse / OpenGameArt.org CC-BY-SA 3.0
Appendix 21: Sounds: Soundimage.org
Appendix 22: Cards Kenney.nl

Includes text taken from Wikipedia, some of which is edited CC-BY 3.0

6

Introduction To Game Design & Programming

Creative Commons

Some of the resources used in the appendix is licensed in Creative Common:s.
Some extracts from Wikipedia is also in Creative Commons.

See https://creativecommons.org/ for full info

The Main Ones Are:

License Conditions

Creators choose a set of conditions they wish to apply to their work.
Attribution (by)

All CC licenses require that others who use your work in any way must give you credit the way you request,
but not in a way that suggests you endorse them or their use. If they want to use your work without giving
you credit or for endorsement purposes, they must get your permission first.

ShareAlike (sa)

You let others copy, distribute, display, perform, and modify your work, as long as they distribute any
modified work on the same terms. If they want to distribute modified works under other terms, they must
get your permission first.

NonCommercial (nc)

You let others copy, distribute, display, perform, and (unless you have chosen NoDerivatives) modify and
use your work for any purpose other than commercially unless they get your permission first.

NoDerivatives (nd)

You let others copy, distribute, display and perform only original copies of your work. If they want to modify
your work, they must get your permission first.

Attribution 4.0 International (CC BY 4.0)
This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:

e Share — copy and redistribute the material in any medium or format

Introduction To Game Design & Programming
¢ Adapt — remix, transform, and build upon the material
e forany purpose, even commercially.

e The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

¢ No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

This is a human-readable summary of (and not a substitute for) the license. Disclaimer.
You are free to:

e Share — copy and redistribute the material in any medium or format

e Adapt — remix, transform, and build upon the material

e forany purpose, even commercially.

¢ The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

¢ No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Public domain

Our licenses help authors keep and manage their copyright on terms they choose. Our public domain tools,

Introduction To Game Design & Programming

on the other hand, enable authors and copyright owners who want to dedicate their works to the
worldwide public domain to do so, and facilitate the labeling and discovery of works that are already free of
known copyright restrictions.

cco

Use this universal tool if you are a holder of copyright or database rights, and you wish to waive all your
interests that may exist in your work worldwide. Because copyright laws differ around the world, you may
use this tool even though you may not have copyright in your jurisdiction, but want to be sure to eliminate
any copyrights you may have in other jurisdictions.

o Learn more
. Use this tool
Public Domain Mark

Use this tool if you have identified a work that is free of known copyright restrictions. Creative Commons
does not recommend this tool for works that are restricted by copyright laws in one or more jurisdictions.

10

Introduction To Game Design & Programming

Introduction To Game Design & Programming

LT T LF ot ' PPN 16
=] ol = PPN 16
GAME RESOUICESuiiiiiiiiinnunnniiiiiiieiieeiianssssiiiiiiieretemmssssssiistitetsmmasssssssststeessnssssssssssessereersrssssssssssssssesssssnasssses 18
LY T T 1 o1 o =T S 18
ADOUL GAMEIMAKET ...ueeeeieiiiiiiiiiiiiiiieteetr et e e e e e st e s sessessess s s s sesssersnsnnns 20
Chapter 1 Starting With An 1dea ...ccuiiieiiiieiiiieiiiiiiiiiiiiiiieiiieiiieeiianieiesiiiesissssisssstesssisessisssesssssssssssasssssnssssns 23
LT = T =T S 23
Infinite Scroller — SUrVive as IONE @S YOU CaN...c...iiiiieriiiiiineiiiiiniitirnnsserienesssieesssssssrasssssensssssssnssssssssnssssssnnsssss 24
Parallax Backgrounds — Give a sense of depth to the 8ameccoiviiirririeiiiiiiiiiiiinin e 25
Moveabe Player — Move the player and allow to ShoOt WEapONscciiieeiiiiiiiiiiinieiiniecnreesserresssssennnsnes 26
Basic Enemy — IMOVES aCroSs the SCrEeNcccueeueueiiiiiiiiiiiiiaiiiiiieririrersassssssssissseesssasssssssssssssssssssssssssssssssasnses 27
Advanced Enemy — Moves in circular path and shoots at the playerc.covvueiuiiiiiiiiiininiriiinnieneeeeen. 28
Boss Enemy — FOrmiddable @Nemycceuiiiiiiiiiiiiiiniiiiiiinieeisienesesnrnnsssssesssssssanssssssenssssssssssssssssnssssssnnnssss 29
Multiple Weapons — Player can collect upgrades to their Weapons..........ccccceeeiiiiiiiiiiemienisininninnnnseessennee. 30
Set Health — Player has set amount of health, game over when all [ost.........cccccoiiieiiiiiiiiiiiicninircreeceeeanes 31
Highscore System — Save and display the player’s best SCOre.........cccvimiimeniiiiiiiiiiinieninirsnseesees 31
Game Aim - Survive as long as possible and get the highest score..........cccviimruieniiiiiiininininnneeee. 31
Chapter 2 Initial PIanning & Preparationccccicciieieciiiinniiiiienieiinmesiiieseiesisssiessssssssnssssssssssssssssssssssnsssssses 32
Chapter 3 SOftWare & FINANCING...c....iiiiuiiiiiiiiiiiiriiiiiiieiis i e ress s srassssseas s sesssessssenssssssssassssssenssnssnen 39
Working wWith DIifferent BUABETScccuiiiiemiiiiiiiniiiieneieiiineiiiiiensssernmessssessssssssessssssnsssssssnsssssssssssssssnsssssssnnes 39
COSt Of SOFEWAIE cueueeeriiiiiiiiiiiiiier e r s e s e s s e e s s se s sesssessssssssssssnens 41
DEVEIOPIMENT ... ciiiiiiiiuieiiiiiniiiienreeessssisesstrreassassssssssssssesassassssssssssssssssssssssssssssssssesssssssssssssessssssssssssssssssssssasnses 41
GrAPRNICS ciieeeiiiiiineiiiiteettiiteieiertesstereessestanesssssrassssssssssssssennssssesnssssssssnssssennnssssssnnsssssssnssssesnsssssesnnsssssnnsssssssnnes 42
Free Graphics SOftWArEcciviiiiiiiiiiiiiiiiniiiirrir s s s s e s se s sa s sssessasssassssssssssessansnssssssssssssesssannsan 42
Paid Graphics SOfLWAKE ...c...iiieeeiiiiiiiiiieiiiitreietereesesennessssennsssttenssssssensssssssssssssennssssssesnsssssssssssssssnsssssssnnssss 43

11

Introduction To Game Design & Programming

LT U 45
Free AUdio SOFEWAIEccuiiiiiiiiiiiiiiiiiiiiii it ee e s es e e s sesssesssssssessssssssssssssens 45
Paid AUIO SOFtWATIE ...ceieiiiiiiiiiiiiiiiiiiiii it e e st e s s e s e s e s seseses e sssssesssssssssssssens 48
Pre-Made GraphiCsciiiiiiiiiiiiieiiniiiiiiiiiniiiesneis e sreressasasssssssssssseseassssssssssssssessssssssssssssssssnsssssssssssssssssssanssns 49
FrE@ GraPiCS ... iiieeiiiiieeiiiiiiieintieeeiietereeeettnnsesrrnnesssteensssssesssssssnnnesssssssssssssnnssssssnnsssssssnsssssennsssssssnsssssssnnssssnen 49
o T € T 1413 PN 49
Ways Of raiSiNg FUNGAS ...ccuuuueiiiiiiiiiiiitiiiiiin s ses s s ssesesses e s sasasssssssssssssesssssssssssssssssssnssnnnssssssssnns 50
CrOWA FUNAING .cccuuiiiiiieiiiiieiiiiiieiisiiteessseeteesesttnnsssssessesssrensssssesnnssssssnnssssessssssssssnsssssenssssssnnsssssssnnnssssansssssssnnes 50
o Lo T N 50
LYol =LY 1= 1 T 50
STEAM EArlY ACCESS...ciiiiiuiuneiiiiiiiiiiiitiieiiiiise it ieseasssssssssesessssasasssssssesseesssasssssssssssssssessssssssssssssssssssnssnssssssssssns 50
Chapter 4 GAmME ASSETS....iieuuuiiiriuiiiiraeiitrrseiitieneiietrasestieasssttrassstrtsssssstesssssstsrsssssteassssssasssssssrassssssassesssssanes 51
Chapter 5 RefiNiNG RESOUICES ...cuuueiiiiieeiiiiierieiiiieeeiiiimnnieiiensieiissssssssnnssssssssssosssnnsssssssssssssansssssssansssssssnnsssssnnes 52
GrAPNICS ceenuiieieeiiiiteiieeeeeeeeeeeeeaneeeennseeesennessseeenssesessasssssesnsssssesnsssssssssssssssnnsssssennasssseenssssessnsssssesnnsssesnsnnsnsnsnnns 52
L T o U 70
Chapter 6 Beta Testing & DeBUEEINGiiiuiiieiiieiiiiiiiiiiiiiiiiniieiiiieniieiirsniiesniresisssssssnscssnssssesssssssssnssssnssssassssnnss 76
2= i 1= 1 - N 76
GraphiCs re t00 |arZE .. ccviueuiiiiiiiiiiiieiiiiiennetireeeeeetresessteresssessenessssstsessssssnnssssssnsessssssnsssssssnsssssesnssssssannssssssnnes 78
NOt reSPONSIVE BNOUGN ...oiiiiiiiiiiiiiiiiiiiiiiirieesisise s eessrasasssssssssesesasasssssssssssssssssssssssssssssessasssssssssssssssesssannsnn 82
TOO CASY wuireuirruirnusirnnsirnnssirusserasssrssssrssstresssrssssrssstrnsssrssssrssssssssssssssssssssessssessssssssssssssessssssssssnssssnsssssssssasssrasssre 84
Player Weapons are t00 SIOWcccuuiiiiieeiiiiiiiniiiiinnitiieniiiiessssssrnnesssssensssssssasssssssnsssssssnssssssssssssssnssssssssnnsssssen 86
HUD is not in keeping with the rest of the §ame.........ccviriueiiiiiiiiiiiiiii s s s e sasas 89
Aspect ratio should be changedciiieiiiiiieiiiiiiir s s esess s esresssserasssssssansssssssnssssssansssssssnnes 91
Collision MasKS are iMPIreSiSEcciiiiiireiuuuiiiiiiiiiiiiiiensiiiiiieitirrsssasssssessstrsesssssssssssssssssessssssssssssssssssssssssasssnss 92
GUI life and dots not in keeping With 8ame Styleccuiiiiieeiiiiiiiiiiiiiiic s rresss s s reseesssessssnsssssnnes 95

12

Introduction To Game Design & Programming

To visually Show damage t0 PIAYercciiiiiiiiiimiiiiiiiiiiiiinirrisieis s sresssassssssssssessssesssssssssssssssssssassssssssssssssns 95
DEBUBEBING . ciieeiiiiieiiiiiis ittt eree s srsre s st eranssessannsssstenssssternnssssarnessssernnsssssnrnsssstennnsssernrrnssternsssanrnnsnns 97
Chapter 7 ProSramMiNG ..ccceeeeeiieeeieeieeneseriesssossssnssssssensssssssnsssssssnsssssssnsssssssnsssssssnssssssssssssssnssssssssnssssssannessssan 98
Programming INtrodUCHIONcc.uuiiiiiiiiiiiiiiiiiiiei i s e s ase s st e s s s s s s aas s e s ensssssnsnnsnns 98
GAME PrOSramIMING c..ieueiieeiiieeiiieuiiiensiensimesiimasiessrmestrssstissstessstossstesssssassssassssssssrsssssessssesssessssssnsssssssssnsssnns 125
TIPS cuiieuiiiinititiiieieteeieienietenetenetanestensetessstsnsssensesensstessssessstensstensstensstensessnsessnssstnnsssnnsstenssssnsssensssensesansesane 127
[0 ¢ 1= o 3TN 128
30T Ty N 215
5 L 222
L T o PN 224
Chapter 8 FiNal TESTING ..c..iiiiuiiiiiiiiiiiiiiii it rrreie s s st r s s ss s e aa s ss e assss sesassssssssnsssssesnsssssansansns 225
Chapter 9 Publishing & Game Promotionccccciiiieeiiiiiiieiiiiiiiiiiinieiniireeiis s srasesssesassssssssssssssesnssssesassesss 226
KT Tol =LY 1= 1 PN 226
YOYO GAMES FOrUM ..cuuuiiiiiiiiiiiiiniiiiiennniiiiinnniiteeaniiineeaniienienssiisessssiesesssssisesssssssessssssseessssssssssssssesssssssssnsssssssenss 226
] T TN 226
o0 3 T P 226
LT T 4 T= o 226
GOOEIE Play ...uiieeeiiiiineiiiiiiiniiiietissittnessteessssssrnmessssssssssssssnsssssssnsssssssnssssssssnsssssssnssssssnnessssssnsssssssnssssssnnsssssses 226
Chapter 10 SUMMAIY ... ciiuiiieiiiniiieenieteiiieeiersiersserssersasersssetsssersssessssssssssssssssssssssssssssssssassssasssssssssassssnsssssnssss 227
TarZEt AUMIENCE....ccieueiiiiiieiiiiiiiiitrenetreneesestrenssssernasssssesssssssssnsssssesnssssssssssssssennssssssnssssssnnasssssesnssssssnnsssssannns 227
ol V- 227
AV = T3 T =T T 4T 227
USEFUILINKS ceeeeireiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiteenrerrer et s e s e s s s s esssssssssssssssssssssssenseenaeeeanne 228
L0 T=T LT =00 = 1 3 229
=0 Tt 1T T4 = L0 Y 230

13

Introduction To Game Design & Programming

WHETE NEXE ..coiiiiiiiiiiiiiiiiiiii it e e e e e s e e s s s e s se s s sesese s s ssssssssssssaassaassasaaeseaeebaebeaesasanaanes 231
L0 T ol [T o T o U 232
AAPPENAIX ceurennreneerraerennerenerrnseeancernsessnssssnssssnsessnsesssssesassesassssnssssnsssssssssassssasssssssessssesassessssesnssesansesnssesnsssnnse 233
APPENIX 1 VAriables ...cccuueuiiiiiiiiiiiiiiiiiiiiniiiiiriieieeisissiessesssasssssssessesessssssssssssssssssesssassssssssssssssssssnsnsssssssss 234
APPeNndiX 2 CONAItIONAIS.......iiiiieiiiiiniiiiirie ittt trerassssrsneesstenesseessnssssssrsnsssssssnssssssnnessssasnssssssssnsssssenne 240
APPENAIX 3 DIAWING .cuuuiiiiuueiiiiiuiiiiruuieiirnitiiraaittteatstesasttastesssteasssiessasssssttessssttssssstesssssssssssssssssnsssssssnns 244
Appendix 4 Drawing CONTINUEcuuuiiiiuiiiiiiiiiiiii et se s ssaae st s eassss e s aasssssessssssessssssssssasssssenns 250
Appendix 5 Keyboard Input & Simple MOVEMENTcccciiiiieiiiiiiiiiiiiiiirensssrennssstienssssssnsessssssssssssssanssssssnns 258
ApPPENdiX 6 ODJECES & EVENES ...coiiiiiiieeeeeiiiiiiiiiiiririneeiisiisiitierasasssssssesesiismsssssssssssssssissessssssssssssssssssssssnsssssssssss 262
APPENAIX 7 SPFITES coeerriiiineiiiiieriiiitnniittrannstieenserteresssstessssssssrnsssssesssssssssssssssssnsssssssnsssssssnnssssesnssssssnnnssssssnne 271
Appendix 8 Health, LIVES & SCOME.......uuuuiiiiiiiiiiiiiniiiiiiiiiiiiiisieassssssisesietissssssssssisssissesssssssssssssssssssssnsssssssssss 280
APPENAIX G IVIOUSE ..ccuueiiiiiiiiiiiiiiiii ittt raasttras st resassssrass s tesassessassssstteassssttsnsssssesassssteansssssesnnsssssenns 285
APPENAIX 10 AIGIMS ..oouiiiiieiiiiiiieiiiienniitiennesiteesssesteresssssessssssssnssssssesssssssssssssssssnssssssssssssssssassssennnssssssnnssssssnns 289
APPENAIX 11 COllISIONS eeuvureiniiiiiiiiiiiiiiiiiiiiiiiieeranesiissesrsresssasssssssesssseesssssssssssssssssssessssssssssssssssssssnsnssssssssss 293
APPENAIX 12 ROOMS cuuuiiiireiiiiireniiiitnneseiensssetisanssessransssssssssssssnssssssessssssssnssssssssnsssssssssssssssssssssennnssssssnnssssssnns 298
AppPendiX 13 BaCKBrOUNASccuuuiiiiiuiiiiiiiis ittt ssratssteaassesss s s sesasssssssasssstsessssssenssssssensnsssssenns 306
APPENAIX 14 SOUNUS.....iiiiiiiiiiiiiiiiiruitiiriir sttt reeass st assesstesassssssssssstteassssttsassssssssssssttssssssesssasssssenns 310
Appendix 15 SPlash SCreens & IMIEBNUccceuiiiiieuiiiiimeiiiieeeisiiemessiteessisssssssssrensssssssnsssssssssssssessssssssnnnssssssnns 316
02V o710 o 13 o3 2 T4 T Lo o o T 320
APPENAIX L7 Al ceeiiiieniiiiineiiiiteeiieitnnesssetnssssttssnsssssensssssssssssssssnsssssenssssssssssssssssnsssssssnsssssssnnssssesnssssssnnnssssssnne 324
APPENAIX L8 INI FlS....ciiieiiiiiiiniiiiineiiitinnnieiitenieiieresssiesnssssssnmsssstessssessssssssssssnsssssssnnssssssnnssssesnssssssssnssssssnne 331
APPENAIX 19 EFfECLS 1iviieiuenniiiiiiiiiiiiiiiiiiiiiiiiiiiiesnassiiissiesatssssssssssssssssesessssssssssssssssssesasassssssssssssssssssnsssssssssss 334
APPENAIX 20 LOOPS .eeevruirirnenisrrrenrsisrransssssrnnsssssssnsssssenssssssssssssssssnsssssesssssssssssssssssnsssssssssssssssnnssssessssssssnnnssssssnne 337
DN T o1 o 13Tt I - LN 341
APPENAIX 22 DS LISTS «uuvirineniirirenriiirnnnssssmsnnsssriensssessernssssssssssssssnssssssesssssssssssssssssnsssssssnsssssssnsssssesnssssssssnssssssnne 348

14

Appendix 24 Scripts

15

Introduction To Game Design & Programming

Introduction To Game Design & Programming

Introduction

Welcome

A note from the author:

Congratulations!

You are about to learn the basics of GameMaker Studio 2, and potentially start a career in
game making.

This book is an introduction to the game making process, an introduction to GameMaker
Studio 2, and other considerations when making your first game.

GameMaker Studio 2 is a powerful piece of software for making games. This book only covers
the basics, but is a great place start.

Best of luck with you game making endeavours,

Ben

Over the last ten years or so | have written many books on game programming and have
completed over two-hundred game projects. During that time | have learnt GML coding to a
reasonable level, and have picked up many skills, tips and tricks and methology for making games
in GameMaker & Game Maker Studio 2.

The purpose of this book is to provide you with some of the knowledge that | have acquired. |
make no claim that I’'m the best coder or designer, but | do have a proficient understanding that |
would like to instil on other budding game makers.

Through my website, | set up a number of polls and gained feedback on what game to make
and which graphics to use, in total over 500 people have voted on my site, and chose a side-
scrolling war zone themed shooter. Thanks to everyone who voted. This book covers my approach
to make said game.

Unlike previous books of mine that focused mainly on the actual GML code, this book covers
the full design progress, with some code thrown in. It focuses on:

e Starting With An Idea

e Initial Planning & Preparation
e Software 7 Financing

e (Game Assets

e Refining Resources

e Beta Testing & Debugging

e Programming

e Final Testing

e Publishing

e Game Promotion

e Additional Considerations

e Summary

e +An Appendix Of Commonly Used GML Coding

16

Introduction To Game Design & Programming

| will be the first to admit that the process of making a game is dynamic and fluid, and as such
may not follow the order above. This will change depending on your level on GML, whether you
have made a similar game before, the genre, and the complexity of the game. That said, the above
order is a great place to start.
So, you have GameMaker Studio 2 installed. Let’s start it up and start making a game. Then
again, let’s not. Jumping straight in is a bad idea, not least for the following reasons:
e You have no idea at this stage what the game will be about
e You have not yet decided on the look of the game
e You have no idea what the objects will be and how they will interact
e Jumping in blindly will make the whole game creation process more difficult for you
e You will come up with extra ideas for the game, and adding them when the basic game
has been made will make this confusing and difficult

That said, if you just want to create one game element to see what it looks like, or how a
certain feature works, or basic player movement, | consider that perfectly OK. Attempting the
whole game with no planning is a big no-no, especially if you are quite new to GameMaker or the
game making process.

GameMaker Studio 2 is a very powerful and adaptable software for making 2D games, | would
go as far as to say that if you can make pretty much any 2D game that you can think of.

17

Introduction To Game Design & Programming

Game Resources

This game will consist of graphics and audio from a couple of sites, due to licensing restrictions
| can’t provide them as a download, but | will include a link so you can access them should you
decide to make the game covered in this book. The main focus of this book is on the design and
programming considerations, with some of the more prominent coding dissected and explained.
You will not need the assets to enjoy this book.

All game graphical assets used in the main game are from the great website
GameDeveloperStudio.com. If you wish to remake the game made in the book, you can access the
assets directly from this site. The site does have several free assets, so you can swap them in
instead of using purchased assets if you are working on a low budget.

Main Book Contents

The main areas covered in the book are:

1 Starting With An Idea
This section covers what you need to do with your initial ideas and how to take them forward.

2 Initial Planning & Preparation
Take your ideas forward, design the basic game layout, what objects will be present, and how they
will interact.

3 Software & Financing
Software and resources cost money, this chapter covers some of the options available when funding
your game.

4 Game Assets
Possible design issues, and how to tweak your ideas.

5 Refining Resources
Setting up and editing resources so they are ready for your game,

6 Beta Testing & Debugging
Testing the game, fixing bugs, and implementing feedback.

7 Programming
Covers some of the coding required to implement aspects from your game design. This also covers a
way to make the game in small chunks, so you can test it as you go.

8 Final Testing
Polishing off the game and making it ready for publication.

18

Introduction To Game Design & Programming

9 Publishing & Game Promotion
Where to publish your game.

10 Game Promotion
Summary of the book.

19

Introduction To Game Design & Programming

About GameMaker

(Edited From Wikipedia) CC-SA 3.0

GameMaker Studio (formerly Animo until 1999, Game Maker until 2011, GameMaker until 2012, and
GameMaker: Studio until 2017) is a cross-platform game engine developed by YoYo Games. I’m showing my
age here, but vagely remember Animo, and have followed it’s progression since then.

GameMaker accommodates the creation of cross-platform and multi-genre video games using a custom
drag-and-drop visual programming language or a scripting language known as Game Maker Language,
which can be used to develop more advanced games that could not be created just by using the drag and
drop features. GameMaker was originally designed to allow novice computer programmers to be able to
make computer games without much programming knowledge by use of these actions. Recent versions of
software also focus on appealing to advanced developers.

| would add, that the software has now reached a point that if you can design a 2D game, it is possible to
make it in GameMaker Studio 2.

Overview

GameMaker is primarily intended for making games with 2D graphics, allowing out-of-box use of raster
graphics, vector graphics (via SWF), and 2D skeletal animations (via Esoteric Software's Spine) along with a
large standard library for drawing graphics and 2D primitives. While the software allows for use of 3D
graphics, this is in form of vertex buffer and matrix functions, and as such not intended for novice users.

The engine uses Direct3D on Windows, UWP, and Xbox One; OpenGL on macOS and Linux; OpenGL ES on
Android and iOS, WebGL or 2d canvas on HTML5, and proprietary APIs on consoles.

The engine's primary element is an IDE with built-in editors for raster graphics, level design, scripting, paths,
and shaders (GLSL or HLSL). Additional functionality can be implemented in software's scripting language or
platform-specific native extensions.

Supported platforms

GameMaker supports building for Microsoft Windows, macOS, Ubuntu, HTML5, Android, iOS, Amazon Fire
TV, Android TV, Microsoft UWP, PlayStation 4, and Xbox One; support for the Nintendo Switch was
announced in March 2018, with Undertale to be the first such title to be brought to the Switch.

In past, GameMaker supported building for Windows Phone (deprecated in favor of UWP), Tizen,
PlayStation 3, and PlayStation Vita (not supported in GMS2 "largely for business reasons").

PlayStation Portable support was demonstrated in May 2010,but never made publicly available (with only a
small selection of titles using it).

Raspberry Pi support was demonstrated in February 2016, but as of May 2018 not released.

20

Introduction To Game Design & Programming

Between 2007 and 2011, YoYo Games maintained a custom web player plugin for GameMaker games
before releasing it as open-source mid-2011 and finally deprecating in favor of HTML5 export.

Drag and Drop
Drag and Drop (DnD) is GameMaker's visual scripting tool.

DnD allows developers to perform common tasks (like instantiating objects, calling functions, or working
with files and data structures) without having to write a single line of code. It remains to be largely aimed at

novice users.

While historically DnD remained fairly limited in what can be comfortably done with it, GameMaker Studio
2 had seen an overhaul to the system, allowing more tasks to be done with DnD, and having it translate
directly to code (with an in-IDE preview for users interested in migrating to code).

GameMaker Language

GameMaker Language is GameMaker's scripting language. It is an imperative, dynamically typed language
commonly likened to JavaScript and C-like languages.

The language historically tries to accommodate different programming backgrounds and styles - BASIC/Lua
style "and" / "or" keywords can be used interchangeably with C-style "&&" /" | |" operators; parentheses
around conditions in if-statements and loops can be omitted; semicolons are largely optional (insertion
happens at the end of statement; compile error is raised in case of ambiguity).

The language's default mode of operation on native platforms is via a stack machine; it can also be source-
to-source compiled to C++ via LLVM for higher performance. On HTML5, GML is source-to-source compiled
to JavaScript with optimizations and minification applied in non-debug builds.

History

GameMaker was originally developed by Mark Overmars. The program was first released on 15 November
1999 under the name of Animo (at the time, a graphics tool with limited visual scripting capabilities). First
versions of program were being developed in Delphi.

Subsequent releases seen the name changed to Game Maker and software moving towards more general-
purpose 2d game development.

Versions below 5.0 have been freeware; version 5.1 introduced an optional registration fee; version 5.3
(January 2004) introduced a number of new features for registered users, including particle systems,
networking, and possibility to extend games using DLLs.

Version 6.0 (October 2004) introduced limited functionality for use of 3D graphics, as well as migrating the
runtime's drawing pipeline from VCL to DirectX.

21

Introduction To Game Design & Programming

Growing public interest led Overmars to seek help in expanding the program, which led to partnership with
YoYo Games in 2007.From this point onward, development was handled by YoYo Games while Overmars
retained a position as one of company's directors. Version 7.0 was the first to emerge under this
partnership.

The first macOS compatible version of program was released in 2009, allowing games to be made for two
operating systems with minimal changes.

Version 8.1 (April 2011) sees the name changed to GameMaker (lacking a space) to avoid any confusion
with the 1991 software Game-Maker. This version also had the runtime rewritten in C++ to address
performance concerns with previous versions.

September 2011 sees the initial release of "GameMaker: HTML5" - a new version of software with
capability to export games for web browsers alongside with desktop.

GameMaker: Studio entered public beta in March 2012 and enjoyed a full release in May 2012. Initial
supported platforms included Windows, Mac, HTML5, Android, and iOS. Additional platforms and features
were introduced over the years following; Late 2012 there was an accident with anti-piracy measures
misfiring for some legitimate users.

In February 2015, GameMaker was acquired by Playtech together with YoYo Games. Announcement
reassured that GameMaker will be further improved and states plans to appeal to broader demographic,
including advanced developers.

November 2016 sees the initial release of GameMaker Studio 2 beta, with full release in March 2017. This
version spots a completely redesigned IDE (rewritten in C#) and a number of new editor and runtime
features.

Reception

The program currently holds a rating of 8.5/10 on Mod DB based on 223 user reviews; many cite its
flexibility and ease of use as positives and instability, crashes, project corruption and outdated features as
negatives. Douglas Clements of Indie Game Magazine wrote that the program "[s]implifies and streamlines
game development" and is "easy for beginners yet powerful enough to grow as you develop", though
noting that "resource objects have to be gathered if unable to create" and that licensing between Steam
and the YoYo Games website is "convoluted".

22

Introduction To Game Design & Programming

Chapter 1 Starting With An Idea

Initial Idea

The idea for the game covered in this book was chosen by visitors to my website. The initial idea was a
war themed side scrolling shooter.
Let’s start by defining a brief for the game, and list some of its features and elements. These are just
initial ideas, we may drop some or add more as the design process progresses.
I'll be taking ideas from other games that have been made in a similar genre. | feel that borrowing
ideas from other games is perfectly OK, taking actual game mechanics or graphics is not OK.
So here are some ideas that | think would work with the game we are making:
e Infinite Scroller — Survive as long as you can
e Parallax Backgrounds — Give a sense of depth to the game
e Moveable Player — Move the player and allow to shoot weapons
e Basic Enemy — Moves across the screen
e Advanced Enemy — Moves in circular path and shoots at the player
e Boss Enemy — Formidable enemy
e Multiple Weapons — Player can collect upgrades to their weapons
e Set Health — Player has set amount of health, game over when all lost
e Highscore System — Save and display the player’s best score
e Game Aim — Survive as long as possible and get the highest score

That’s great as a starting point. Let’s dissect these ideas a bit further:
Please note that my initial sketches were pretty rough and have been re-done for the purpose of the

book. So long as you understand your own sketches and what they represent, your sketches don’t have to be
works of art.

23

Introduction To Game Design & Programming

Chapter 2 Initial Planning &
Preparation

Let’s now draft what objects will be needed for the game, what they will do and some pseudo code.

By pseudo code | mean noting what the code will have to do, and how it will work, without yet writing any
code. | consider this one of the most important steps in the overall design process, so when you get to the
code writing stage you have a clear idea of what you need the code to do. Feel free to make as many
sketches as you need, to visualize any sprites, movement or actions.

obj_player

This object is the one that the player will control.
The main features of this object:

Change y position on keypesses of W and S

Add or subtract to y position based on keypress.
Change x position on keypresses of A and D
Add or subtract to y position based on keypress.
Change the image angle based on y position

Check if y value is below or above the middile point, use this value to calculate the image angle. This is so
the player’s image points up when going up, and down accordingly.

Keep player within a certain area

Use the clamp function to keep x and y within fixed values.
Move back to central point when no keypress

Check if no keypress, move back to middle point.

Control parallax backgrounds based on y position

Change the y position of backgrounds based on player’s y position. Have foreground move more to create a
cool parallax effect.

32

Introduction To Game Design & Programming

Chapter 3 Software & Financing

Costs mentioned in the chapter are the full price at the time of publishing. Software pricing and functions
may change.

Working with Different Budgets

Depending on your available budget, your game design and creation process will vary. | am approaching this
chapter based on the options available as an indie-game-developer (an abbreviation of independent video
game development). | see indie game development as a game created by a small team or an individual,
typically with a small (or zero) budget.

The budgets | consider for this chapter are:

e Zero (or as close to $0 as possible)
e A medium budget (which | set at $500)
e A big budget (which | set at $1000)

Zero (or as close to SO as possible)

It is totally feasible to make a game (even quite a good one) with practically no cash at all. There is a
plethora of free assets available (both for graphics and audio) for making your game (see chapter 4 on game
assets) which creators have made and are happy for you to use in your game projects (ensure to check what
usage restrictions there are — usually just giving credit is enough but do check).

Software for making audio and graphics is available for free.

The Creators version of GameMaker Studio 2 is available for a mere $39, which allows publishing of games
that can be played on Windows.

Therefore, it is possible to start making indie-games for under $40.

A medium budget (which I set at $500)

Spending a little more on assets can improve the look of your game, as much as | respect sites such as
OpenGameArt.org, an do use it a lot when prototyping games, it has the problem that the style of the
artwork varies a lot, so trying to make a game with matching assets can be difficult. A site such as Robert
Brooks’ GameDeveloperStudio.com, has assets that can be used in unison, so all assets follow the same
theme. The assets on his site are fairly priced and he has a simple licence for reuse.

A budget of this size also allows for software that allows you to make your own graphics, a great example is
Sprite Pro, which will set you back $59. You also may consider purchasing Spine for $69 which can work in
unison with GameMaker Studio and do some pretty cool things with your graphics resources. If you are also

39

Introduction To Game Design & Programming

Chapter 4 Game Assets

Just a brief chapter on game assets, as it is covered in more detail in other chapters.
| consider the following important points to consider when sourcing assets (both audio and graphics):

51

Is it worth the price? Are you over paying for an asset that will mean many game sales before you
get your investment back?

Does the graphics / audio match in with you game theme and other assets?

Have you purchased the correct licence?

Have read the licence correctly?

If using a free font, did you say thanks with a donation?

Is the asset ready to use in your project? Or require lots of additional work?

If it is a free asset, did you give credit to the author?

Introduction To Game Design & Programming

Chapter 6 Beta Testing &
Debugging

Beta Testing

| have decided to place this chapter before the programming one, even though you would obviously take on
feedback after you have programmed an initial idea. The reason for this is that the programming section
will include changes made after the debugging stage, so in chapter 7 you will see the finished project.

You’re unikely to go error free on the first attempt. Beta testing allows you to find errors, issues and
problems and act upton them. Usually your beta project will be sent to as many people as possible in order
to get some feedback. You don’t need to act upon every suggestion — though you are likely to get many
good ideas. Feedback could cover issues such as:

e Crashing

e Poor controls

e Graphicissues

e Playability suggestions

e Changing game difficulty

When | do beta testing, I’'m always amazed by some of the great ideas that beta testers provide, and help
propel my game to the next level.

There is a file in the download resources: Game_Base.zip which shows the game before feedback from the
beta testers has been taken on board. You may find it of interest to compare this with the finished game
project.

76

Introduction To Game Design & Programming

Chapter 7 Programming

Programming Introduction

The Programming Introduction covers the initial basics you will need to work through the programming
chapter, it is strongly suggested that you do this section before attempting anything else, if you are new to
GameMaker Studio 2 / GML.

In this section we’ll make a very basic clicker type game. You'll learn the basics of how to set up and use the

following:

Rooms Sounds Sprites
Fonts Objects Drawing
GUI Alarms INI Files

Randomization Create Events Mouse
Events

Step Events

There will be an object instance that appears at random positions and the aim of the game is to click it
before the timer runs out. Each time you successfully click the object the timer will get faster and it will
magicaly jump to a new position. If you don’t click the object before the time runs out, you will lose a life —
and it jumps to a new position. If you lose all your lives, then the game is over. We'll also have basic menu
that shows the current highscore of the game if present.

This game is here to show you around GameMaker Studio 2’s IDE, setting up objects and programming
what they do, how to assign sprites and play sounds. It certainly wont win any awards, but does serve as
great introduction. The sketch below shows the ideas for the menu room and game room:

SKETCH A

98

Introduction To Game Design & Programming

Chapter 8 Final Testing

The final stage is to make some final checks and make sure everything is working and correctly set up.
Ideally there should only be minor tweaks required at this point. You should check for the following:

e Audio does not have any blank sound at start or end

e Texture pages are set large enough for over sized graphics you may have used
e Variables change as expected

e You are using the correct variable types (i.e. local, global or var)

e Collision boxes are set up according to the sprite and how it behaves

e You are destroying instances when no longer needed (i.e. outside the room)

e You are cleaning up paths, or ds structures when done with

e Room sizes are set up with the same aspect ratio (or room size)

e Your beta testers have toughly tested the game (see below)

Finally, send out the compiled project file (whether for PC, iOS, Android, etc.) and get your beta-testers to
check it works OK on a range of different devices as expected. Fingers crossed that everything works as
intended — otherwise a few more weeks of tweaks maybe required.

Congratulations! You have made a computer game. | hope it leads on to a great career in game making.

225

Introduction To Game Design & Programming

Chapter 9 Publishing & Game
Promotion

So, you’ve spent several hundred hours making your game, the least people can do is play it!

There are a few places you can promote your game:

Social Media

A great way to make gamers aware of your game, and to direct them to sites to download / play your
creation.

YoYo Games Forum

Fellow game creators love to see what you’ve made, and are more than happy to provide feedback.

Steam

Get your game listed on probably the biggest gaming site around. Requires a fee, which is recouped if you
reach a certain amount of sales.

ltch.io

A great site made for indies’ games. A great way to get your game seen and make a few SS.

GamelJolt

Another great place to list your game. Easy to use, and simple to create a revenue stream for your game.

Google Play

If you have the export module for Google Play, it is a great to list and sell your games. Your game will
probably need some tweaking if originally made for Windows — though worth the effort.

226

Introduction To Game Design & Programming

Appendix 1 Variables

This section deals with the two main variable types: strings and numbers (also known as real values). You
need to learn the different types, what you can do with them, how to combine them, and how to draw
them on the screen.

Variables are an important part of every game. You can use variables for things such as the following:
e Keeping track of score, health, and lives
e Processing data
e Performing math’s functions
e Moving objects
e Drawing data / text on screen
o Keeping track of a player’s progress
e Making a game easier / harder
e Saving values such as score
e Positioning instances
e Determing whether player has weapon upgrade

e + Lots more

Note: There are a number of variable types. The ones focused on in this book are built-in,
instance, local and global.

Built-in variables include health, score, and lives. These are automatically global in nature and can be
accessed by any other object.

User-defined global variables that start with global. Infront of them, for example, global.weapon, can also
be accessed by any other object within your game. You'll learn more about instance and global variables,
and how to use them as you work through this book.

234

Introduction To Game Design & Programming
Instance variables, for example x and y, and size. These are used only by the specific instance that uses it.
The basic code for drawing text is:

draw_text(x position, y position, text);
A real working example would be: To draw text “Hello World” at position 100x100:

draw_text (100, 100, "Hello World");
To draw a variable with a number (real value), for example:

weight=250;
draw_text (100, 120, weight);
Create an object, obj_example_1, add a Create Event by clicking Add Event, followed by Create Event.

Add the following GML to the Create Event, entering the following with your own name:

example text="My Name Is Ben";
Create a Draw Event and add the following code. To do this, add a Draw Event, and put the following code:

draw_text (200,200,example text);

Create a room room_example and place one instance of this object in the room. Do this by clicking the
Create a Room button at the top of the screen. In the room editor, in the settings tab, set the name as
room_1, click the object tab, and then click in the room to create an instance. Close the room, click File and
Save As, and then give the project the name example 1.

This will draw the value of example_text at the screen position 200,200, with 0,0 being at the top left. An
example showing room positionsis Figure A_1_1:

235

Introduction To Game Design & Programming

Made in GameMaker Studio 2 - X

My Name Is Ben

200,

200

Figure A_1_1. Showing various locations in a room

Real numbers can be whole integers: for example, 20; or include decimals, for example, 3.14.
Double-click on obj_example_1 in the resource tree. Change the Create Event code to:

my age=21;
Then use the following code in the Draw Event:

draw_text (100, 120, my age);

Save and test.
You can add strings together using concatenation:

first name="Samuel";

236

Introduction To Game Design & Programming

last name="Raven";
my name=first name+" "+last name;

You can do mathematical operations on numbers:

cakes=8;
cost=5;
total cost=cakes*cost;
You can perform mathematical calculations on real numbers, for example, +, -, * and /. GameMaker also

allows use of other operators such as mod and div. For example:
a=20;
b=7;

Where:

c=a mod b;
would set c as 6; (b goes into a twice with a remainder of 6).

c=a div b;
would set c as 2 (b goes into a 2 times).

c=a / b;
would set ¢ as 2.65 (approx.).

You can generate random numbers using a number of functions:

number=irandom (20) ;
The above would give an integer (a whole number) between 0 and 20 inclusive.

To make testing easier, GameMaker Studio 2 will create the same sequence of numbers each time a game is
played through. You can override this setting by using the following code:

randomize () ;
This only needs to be performed once, for example, in the room creation code.

You cannot add together numbers and strings directly. For example, this would create an error:
example text="My age is:";
my age=17;
name and age=example text+my age; //This Line Creates an Error

You can convert a number to a string using this:

name and age=example text+string(my_age);
This works, as it converts the number to a string and adds to the other string.

draw_text (50,50,name _and age) ;
Will draw "My age is: 17" at position 50,50.

237

Introduction To Game Design & Programming

Equally, you can change a string to a variable; however it will cause an error only when it doesn’t
correspond to a number. For example “-5” and “2.45” consist of more than just numbers, but real() can
process them fine.

a="3.14";

b=real (a) ;
Would set a b as 3.14.
Extra Useful Code:

You can get a user to enter integer/string with this:

age=get integer("Age? ", 1);
name=get string("Name? ", "Enter Your Name Here");

Note: These two functions above should really be only used for testing purposes and are
fine for beginners. as you advance, you should use get_integer _async and
get _string_async, or create your own text input system. There is an example for each of
these in the manual.

Variables can also be set to true or false (which also return as 1 or 0, respectively, but you should really
always try to use the built-in constants, true and false). These are generally called flags, and will be used a
lot when you make larger games. This type of variable is discussed more in Appendix 2 Conditionals.

There are also built-in constants and you can also define your own as macros.
You should now be aware of the two main types of variables: first, numbers, such as these:

age=10;
pay_per hour=2.17;
bonus=5000;

And second, strings, such as these:

name="Ben";

level name="Dungeon";
food="Cheese";
date="Twentieth";

238

Introduction To Game Design & Programming

Basic Projects

A) Make a program that takes in name, age, and date of birth and displays it on the
screen.
Point for attempting this question - 1 Point for making a working example
1 Point for using good variable names and tidy GML formatting
B) Make a program that takes in five numbers and calculates the average.
Point for attempting this question

Point for using good variable descriptions

Advanced Project

C) Make a program where you enter the date and the program displays correct tag, like 1st, or 23rd.
Point for attempting this question

Point for good formatting

Points for using their own data input system

Point for displaying output nicely on screen

PROJECTS NOTES

if (number mod 2==0)

{
// will draw if number is even
draw_text (50, 50, string(number)+ " is even");
}
if (age==20) {
// will draw “You Are Twenty” if age is equal to 20
draw_text (50,50, "You Are Twenty");
}

239

Introduction To Game Design & Programming

Appendix 2 Conditionals

Conditional statements are used to check and compare variables (and other values such as instance ids, if
sounds are playing, keypresses, functions, mouse position, and more).

Therefore, conditional statements will be used often. Having a strong understanding of them is very
important. Conditionals can combine with other functions. Conditionals, or combinations of them, can be
used to make things happen (or not happen). For example:

e Make a ball bounce when it hits a wall

e Make an enemy fire a bullet if it can see the player

e Play sound effects when an object loses some of its health
e Unlock a level if a score is met

e Make a player move if a mouse button or key is pressed

e Detect the middle mouse button to change a weapon

e Seeif a player has enough cash to buy an upgrade

e Check if a player is jumping or not

e C(Create an effect if a weapon is fired, etc.

e Determining if a weapon is active or not

Explained in the most basic sense, conditionals evaluate expressions, and will execute and perform actions
accordingly. For example, taking the following values:

a=3;
b=2;
c=5;
Would give the following results:

(a+b) ==c returns true.

(a==Db) returns false.

240

Introduction To Game Design & Programming

Note: Use == when using conditionals, rather than a single =.

Actual code will look like this:

if (a+b)==

{
//do something if true
show_message ("true") ;

}
else
{
// do something if false
show _message ("false");
}

In the above example the true result will be processed.

You can add !, which means not. So ! is an expression that negates a logic sentence. So a true sentence

turns into a false sentence, and a false sentence turns into a true sentence:
! (a==Db) returns true if a is not equal to b.
You can test if a sound is playing or not:

if audio_is playing(snd background music)
{
//do something

}

You can test the pressing of a mouse button:

if (mouse_check button pressed(mb_left))

{
//do something

}

You can also check for keyboard presses, for example:

if keyboard check pressed(ord(“Q”))
{

//Do something here

}

ord is a function that identifies a keypress of letters and numbers in a way that GameMaker Studio 2 can
understand. This is known as virtual keycodes, and also includes a series of constants starting with vk_.

Variables can also be set to true or false:

answer=true;
alive=false;

241

Introduction To Game Design & Programming
so:

if (answer)

{
//Do Something

}

would perform any code between { and }.

if (alive)

{
//do something first part here if true
}
else
{
//do something second part here if false
}

would not execute the first part, but it would execute the second part.

You can also use operands and mathematical comparisons when checking a conditional:

a=3;
b=2;
c=5;
(a < Db) returns false,

(c > b) returns true.

You can also use <=to check if a value is equal to or less than, and >= to check if a value is equal to or

greater than.

You can use the following logic operators, && and and for and, || and or for or. For example, the following
will execute code if A and the right arrow are pressed:

if (keyboard check(ord(“A”)) && keyboard check(vk right))
{

//do something if A and right arrow is pressed

}

The following will check either, so it will execute any code if A is pressed or the right arrow is pressed or
both are pressed:

if (keyboard check(ord(“A”)) || keyboard check(vk right))
{

//do something if A or right arrow is pressed (or both)

}

242

Introduction To Game Design & Programming

Basic Projects

e A) Create a password system where the user has to enter a correct password to continue.

¢ B) Create a simple text input system using keypresses. Allow the user to enter their name. Then store as global.name
when enter is pressed. Limit name to 10 characters

Project Note: Look up usage of keyboard_string

Advanced Projects

e () Display an object at a random position on the screen for one second. Player must then click where the object
appeared. Award points depending on how close the player clicked.

243

Introduction To Game Design & Programming

Appendix 3 Drawing

GameMaker Studio 2 has a number of built-in functions for drawing. These include setting drawing colours,
setting text fonts, and drawing geometric shapes.

In the most basic terms, drawing items uses an X Y positional system. X relates to pixels across from the top
left, Y the number of pixels down from the to. Drawing can be relative to the room position or a view. This
and the next section assume drawing in a standard room using default room settings without the use of
views. See Figure A_1_1in Appendix 1 for an explanation of coordinates.

This section serves as an introduction to drawing basic shapes on the screen and familiarization with using X
and Y coordinates.

Basic geometric shapes are useful for the following:
e Drawing a room border
e Creating pop-up boxes
e (Creating room transitions
e C(Creating effects

e Drawing shadows of objects

Note: Due to YYG being a British company, the spelling used is colour, though color can
also be used.

Drawing code must be placed in a Draw Event. There are several options available, but for now we’ll just
use the main Draw Event. Figure A_3_1 shows how to select this, and the options available.

244

Introduction To Game Design & Programming

4 Object: object0 4 Events

Name:
object0

Sprite:

[J

Collision Mask:

No Sprite

Same As Sprite

Visible Solid

) Add Event
Persistent

Uses Physics
Events
Parent

Physics

Variable Definitions

Figure A_3_1: Showing how to select draw event

245

@
(o]
®
%
o

O+ 0O
© 58 [0 e

+
+

1l @

Create
Destroy
Clean Up
Step
Alarm
Draw
Mouse
Key Down
Key Pressed
Key Up
Gesture

Collision

VOV WV VWV WV VWV VvV Vv

Other

Asynchronous »

Draw

Deaw (LI
Draw Begin
Draw End

Draw GUI Begin
Draw GUI End
Pre-Draw
Post-Draw

Window Resize

Introduction To Game Design & Programming

Colour constants have built-in values:

Colour Appearance RGB Value
¢ aqua 0,255,255
c_black I ERRRR 0,0,0
c_blue I ERERE 0,0,255

¢ dkgray I ERRRR 64,64,64
c_fuchsia EEREN 255,0,255
c_gray ' BERRR 128,128,128
c_green (AR RRE 0,128,0
c_lime ‘BERER 0,255,0

c ltgray 192,192,192
¢_maroon I RRRRR 128,0,0

¢ _navy I BRRRR 0,0,128

¢ olive (AR BRE 128,128,0
c_orange 255,160,64
¢ _purple I ERNRE 128,0,128

¢ red iiiiil 255,0,0

¢ silver 192,192,192
c teal l l . I l l 0,128,128
c_white 255,255,255
c_yellow 255,255,0

246

Introduction To Game Design & Programming
The following code can be used to set a drawing colorr:

draw_set colour (c_orange) ;
Colour can also be set using hexadecimal values prefixed with a 'S' character, which in GameMaker Studio 2
is in the format BBGGRR:

draw_set colour ($FFA040) ;
Or you can set the colour by setting each colour channel:

colour=make colour rgb (240, 90, 100);
You can also set the colour using RGB and saving this as a user-defined variable. Obviously, any value for
make_colour_rgb should be in the range of 0 to 255. For example:

my colour=make colour rgb (255, 160, 64);
draw_set colour (my colour);
draw_circle (50, 50, 25, false);

The above example would draw a red circle at position 50,50 with a radius of 25 and using false draws as a
solid circle.

If you were to use true it would only draw the outline.
This code would draw a line from position 100,100 to 200,200 in blue:

draw_set colour(c_blue); draw _line (100, 100, 200, 200);
The following will draw a solid gray rectangle from 5,5 to 110,110. The last false sets the rectangle to be
filled in. Using true would draw the outline only.

draw_set colour(c_gray); draw_rectangle(5, 5, 110, 110, false);
Other drawing functions that you can use include (again true or false draws filled or border only), for

example:

draw _ellipse(xl, yl, x2, y2, true); //draw an ellipse with
outline

draw_point(x, y); // draws a single pixel

draw_roundrect(xl, yl, x2, y2, false); //draws a solid rounded

rectangle

draw line width(xl, yl, x2, y2, width); //draws a line of given
width

draw_triangle(x1l, yl, x2, y2, x3, y3, false); //draws a solid
triangle

If you're looking for something more advanced, you can look up primitives in the manual. You can open the
manual by pressing F1 in GameMaker Studio 2.

247

Introduction To Game Design & Programming

Basic Projects

e A)Draw a grid of black and white squares, suitable for playing chess or checkers on. 3 Points

e B) Create a floor plan of the classroom; include furniture, windows, and doors (use different colour for each).

Advanced Project

e () Draw a picture of the Mona Lisa or one of Piet Mondrian’s paintings using basic drawing shapes..

note on projects for Appendix 3

It’s also possible to draw a sequence of connected lines using primitives. For example:

draw_primitive begin(pr linestrip);
draw_vertex(50,50) ;
draw_vertex(150,50) ;
draw_vertex(50,150) ;
draw_vertex(250,50) ;
draw_vertex(50,250) ;

draw primitive end() ;

248

Introduction To Game Design & Programming

Figure A_3_1: Graph sheet for drawing on

Scale: 1 Square=___ Pixels

249

Introduction To Game Design & Programming

Appendix 4 Drawing Continued

There are a number of other functions for drawing images and variables. These can be used separately or
combined to create a number of effects. In any game, you’re likely to have a number of sprites and
information you want to display on the screen.

For example, images can be used for drawing:
e The player
e Missiles and bombs
e Menu buttons
e Walls and platforms Text can be used for:
e Scores and health
e Player names
e Game information
e Pop-up text
e Gametimer

e Backgrounds and Foregrounds

Note: Only try to draw the value of a variable if it has already been declared in the
Create Event or prior to drawing it; failing to do so may cause an error. Built-in variables
health, lives and score are OK to draw without being declared.

Create a new project in GameMaker Studio 2, along with a new object obj_example.

To use drawing functions, they need to be placed within a Drawing Event. Create a Draw Event for the
object you just created.

draw_text (100, 100, "Hello World! ");
This will draw the Hello World! sentence in the room at position 100,100 — where this position is the top-

250

Introduction To Game Design & Programming

left corner of this drawn text.
You can also include strings and reals, by converting the real to a string:

age=20;

draw_text (100, 100, "I am "+string(age)+ " years old");
This will draw the text I am 20 years old sentence on the screen. You can format text too:

e Use a different font

e Use acolour

e Have different horizontal and vertical alignment

Save the code you just wrote, and close the object. Create a new font by right clicking on at the top of the
screen. Give the font a name, something like font_myfont, and select a better-looking typeface, for
example, Calibri.

Resize the font to about 30 pixels, so the user can see it better. Now, save the font and return to your
object’s Draw Event.

Formatting functions need to be applied before drawing text, and they can be applied in any event;
however, the best practice is to set drawing directly before drawing any text. This can be in code or by
calling a script you’ve set up. For example you can set font, colour, and alignment:

draw_set font(font myfont); //Use this font for drawing text
draw_set colour(c_blue); //Make the text blue

draw_set _halign(fa_center); //Center the text to the x position
draw_set valign(fa middle); // Center the text vertically to the
y position

Note: When you apply formatting, it will remain in place for all objects; ideally you
should set the formatting right before any drawing code.

Now, the text will be significantly bigger, since you created a bigger font. It will also appear blue, and its
position will be changed because of the horizontal and vertical alignment settings.

Here are some more arguments that you can use with the alignment functions.
For horizontal alignment: fa left, fa center, fa right

251

Introduction To Game Design & Programming

For vertical alignment: fa_top, fa middle, fa bottom

Note: You can insert a new line using /n

If you want to draw a value of a variable that is not a string, use the string() function with the real variable
name, and this will convert it into a string. This will allow you to combine strings and real. If you are drawing
just a real, you do not need to convert to a string.

When you apply drawing formatting, like font, colour, alpha, or alignment, it will apply to all drawing,
including other objects, until you change to something else. For this reason it is a good idea to apply
formatting right before you do any drawing, and to reset alpha back to 1 after you have changed it.

For example, you do the following code in the Create Event of an object, obj_example:

name="Ben" ;
age=28;
country="England";
food="Pizza";

Which would look like Figure A_4_1:

4 objectO: Create

Create

Figure A_4_1. Showing create event

You can then set a font, for example, as shown in Figure A_4_2:

252

Introduction To Game Design & Programming

4 Font: font_myfont

Name font_myfont

. abcdef ABCDEF
e 0123456789 L,<>M&|?
the quick brown fox jump

Style Regular

. THE QUICK BROWN FOX J

v

Size 30
Anti-aliasing On Off

32..127 1"#S%E&'(*+,-./0123456789;;<=>? @ABCDEFGHIJKLMNOPQORST UMWY
Group: Default -

Add Add new range

Delete Delete selected range

Figure A_4_2: Setting a font

You can then apply the settings and draw the text on screen, by putting the following code in the Draw
Event of obj_example:

draw_set font(font myfont) ;
draw_set halign(fa_center);
draw_set valign(fa middle); draw_set colour(c_red);
draw_text (300,200, "His name is "+name+". \n He is
"+string(age)+" years old. \n He lives in "+country+". \n His
favourite food is "+food+".");

Create a room, room_example, and place one instance of obj_example in it. When run, you will see that

shown in Figure A_4 3:

253

Introduction To Game Design & Programming

E Made in GameMaker Studio 2

Figure A_4_3: Showing example output

Create a new project. Load the sprite from the resources folder, and give it a practical name, something
short like spr_test.

Our goal is to draw this sprite in a few different ways, so create an object, obj_test do not assign a sprite,
we will be drawing this using code in the Draw Event. Add a Draw Event with the following code to draw a
normal sprite on the screen:

/// Rdescription drawing

draw_sprite(spr_test, 0, 200, 200);
Place one instance of this object in roomO0 and test. This will draw the sprite spr_test, using sub image 0 and
position 200, 200.

Sub image refers to which frame of the sprite to use. A sprite can have 0 (which can be useful tool in certain
circumstances), 1, or multiple sub images. They can be used for animations, or to show a different image
when facing different directions or performing an action like shooting or climbing a ladder.

If you run the game now, you will see your sprite at the 200,200 position, but what if we want to make the
sprite look different? For extra formatting options, use the draw_sprite_ext function:

draw_sprite ext(sprite, sub image, x, y, xscale, yscale,
rotation, colour, 1);

The above is used when you want more flexibility in drawing the sprite. It may also be used to draw the
default sprite. It will draw the sub image frame, at the given x and y location, while xscale and yscale set its

254

Introduction To Game Design & Programming

size, 1 is 100% size, 0.5 would be half size, 2 would be double size. Rotation changes the angle of the image
counterclockwise. Colour blends the image colour. An example using draw_sprite_ext(); would be the
following, which would draw the sprite spr_enemy, sub image 0, at position 180,120, 50% larger, rotated
25’ counterclockwise with a reddened colour:

draw_sprite ext(spr_enemy, 0, 180, 120, 1.5, 1.5, 25, c_red, 1);
The colour blending can be used to great effect to give a visual reference of something happening. For
example, blending with red can visualize that the enemy has been hit by a bullet.

If your sprite has just one sub image, and no other drawing actions, you don't need to add anything in the
Draw Event as the sprite will be automatically drawn, when it is assigned to an object. If you are drawing
text or want to draw multiple sprites from a single object and your object has a sprite, you can add this:

draw_self();
If usingdraw _self () ; you may want to manually set which sub image (if you have multiple sub

images). You can do this using:

image index=1;
image speed=0;

Which would set the sub image 1 as the sub image to be drawn.

Note: The image index counting starts at 0. So if your sprite has just one image it will be
index 0

Setting the image speed to 0 prevents it from automatically animating.
You can also set the speed the sub images will play at using, for example:

image speed=2;
Which would set the animation speed at 2. The speed is a scalar value, so 0.5 will draw the same sub image
for two steps, 0.25 for four steps, and that larger values like 2 will “skip” a sub image and only show every
second sub image per step.

You can also set the angle of an image (its rotation). This can be a value between 0 and 359. For example:

image_angle=45;
You can set an object moving, for example the following will make the object move to the right at a speed
of 2:

motion _set(0,2);

draw_self () isthesameasdraw sprite ext () usingonly all the default image variables,
which is the same as letting GM default draw (i.e., no draw event defined, so GM draws the given sprite).

255

Introduction To Game Design & Programming
You can use draw_sprite_ext() with the default settings, for example:

/// @description drawing

draw_sprite(spr_test, 0, 200, 200);

draw_sprite ext(spr_test, 0, 400, 400, 0.8, 1.2, 45, c_blue,l);
For example, the following will stretch the sprite 80% on the length and by 120% on its height; rotate by 45
degrees and blend with the colour c_blue:

Figure A_4 4 shows a sprite drawn normally, and with the code above:

Figure A_4_4: Showing sprite drawn normally, and with draw_sprite_ext

Note: Image blending works better with lighter sprites, and best with ones that are
white.

256

Introduction To Game Design & Programming

Basic Projects

e A)Make a program that draws a rotating sprite.

e B) Make a program that writes a formatted message on the screen. Set a font type, colour, and alignment.

Advanced Projects

e () Make a program that draws randomly positioned cloud sprites moving to the left at various speeds, with varying size
and opacity (alpha).

¢ D) Get user to enter their name. Draw this on the screen, formatted, moving from the top of screen to the bottom.
Destroy the object when it reaches the bottom

257

Introduction To Game Design & Programming

Appendix 5 Keyboard Input &
Simple Movement

Keyboard interaction is one of the key elements of a game.
They can be used for:

e Moving a player

e Choosing a level to play

e Changing game options

e Setting cheat mode

e Switching weapons

e Picking up items

Note: Keyboard letters, that is, ‘X' must be in capital when used with ord.

In addition to keyboard_check, there are other options available

. Note that there is a strong distinction between these three functions:
keyboard_check checks whether the key is currently being pressed.
keyboard_check_pressed checks whether the key has just been pressed.

keyboard_check_released checks whether the key has just been released.

Note: There is a strong distinction between these three functions — it is very important
that you understand the difference and use the correct code when making your game

258

Introduction To Game Design & Programming

As well as keypresses, you can detect mouse button presses, also in the Step Event for example. As with
key_check, there is a difference between mouse check button,
mouse_check button pressedandmouse check button released:

if (mouse check button(mb left)) // Checks if left mouse button
is being held down.

{
// do something

}

You can move an object by changing its x and y positions. x is the position in pixels across the screen, and
y is how many down.

For example, you could put the following into a Step Event:

if (keyboard check(ord(“A”))) {x-=5;1}
if (keyboard check(ord(“D”))) {x+=5;1}
if (keyboard check (ord(“W”))) {y—-=5;}
if (keyboard check(ord(“S”))) {y+=5;1}
or
if (keyboard check(vk_left)) {x-=5;}
if (keyboard check(vk_right)) {x+=5;}
if (keyboard check(vk up)) {y—-=5;1}
if (keyboard check(vk down)) {y+=5;}

You can also use Boolean values as multipliers, since a value of false will return 0, and a value of 1 will
return true, but this can be a bit confusing at first. The following allows you to move an object with key
presses. vk _right is the built-in constant for the right-arrow key; it will return as true when the right-
arrow key is being used. The same applies for the other arrow keys. You can combine keypresses in a cool
way to make movement:

x+=5* (keyboard check (vk_right)-keyboard check(vk_left));
y+=5* (keyboard check (vk_down) -keyboard check (vk_up)) ;
See Reference » Mouse, Keyboard and Other Controls » Keyboard Input in the GameMaker Studio 2
manual for more keycodes.

You can also get the value of the last key that has been pressed with keyboard lastkey

Using keyboard_lastchar example, you make a string of what has been typed. In the Create Event of an
object, obj_example put:

typed=" " ;
In the Step Event place:

typed=typed+keyboard lastchar;
keyboard lastchar="";

259

Introduction To Game Design & Programming
And in a Draw Event put:
draw_set colour(c_white);
draw_text (100,100, typed) ;

Put this object in a room and then test it.

There is an example for the above in the resources folder.

260

Introduction To Game Design & Programming

Basic Projects

e A)Make a movable object that can wrap around the screen, so if it goes off of the screen it appears on the
opposite side.

e B) Create a simple two-player game, one player using WSAD and the other with arrow keys. One player must
chase the other player around the room.

Advanced Project
e () Create a maze that the player should navigate.

Note: You can check for the lack of presence of another object at a location using, for example:

if Iplace_meeting(x,y+4,0bj wall)

{

//do something

}

261

Introduction To Game Design & Programming

Appendix 6 Objects & Events

This appendix describes using objects and reflects what has been learned previouly. Objects are the
lifeblood of GameMaker Studio 2. You use objects to do the following:

e Make moving sprites

e Insert code blocks of GML

e Combine with events to make things happen
e Detect collisions with other objects

e Detect keypresses and mouse input

e Draw sprites and variables on screen

Objects consist of events. You put your code in these events to create, change, detect, draw, or make things
happen.

The main events you will use most often:
Create Event

This event is executed when the object is created or at start of the room if already present. This event is
only executed once. It is useful for defining variables, and for any other sort of setup associated with new
instances of the object, for example:

health=50;
lives=5;
Mouse Events

These are great for things such as creating an object when the mouse button is clicked, or changing the sub
image of a sprite when mouse is over it. This can be used to execute code/actions if the mouse condition is
true. This can be done using GML code Mouse Events.

Note: Global mouse events allows actions to be done if the mouse button is clicked
anywhere on the screen, not just over the sprite of the object. Standard mouse events
trigger when clicked over the sprite assigned to the object (actually the mask set for the
sprite).

262

Introduction To Game Design & Programming

Figure A_6_1 shows the Mouse Event options available:

Add Evenr
Q Create

Destroy
Clean Up
Step

IONE =

Alarm

Draw

Mouse

Key Down
Key Pressed
Key Up
Gesture

Collision

VOV OV VYV VY Y YV Y

Other

v
40
oo
10
0o
'

EYS
*
—
—

Asynchronous »

Left Down
Right Down
Middle Down

No Mouse Input

Left Pressed
Right Pressed
Middle Pressed

Left Released
Right Released
Middle Released

Mouse Enter

Mouse Leave

Mouse Wheel Up

Mouse Wheel Down

Global

Figure A_6_1: Showing available mouse events
Mouse interaction can also be done in GML in a Step Event: for example, the following will play a sound

when the left mouse button is released over the objects sprite:

if position _meeting(mouse_ x, mouse_y, id) &&

263

Global Left Down
Global Right Down
Global Middle Down

Global Left Pressed
Global Right Pressed
Global Middle Pressed

Global Left Released
Global Right Released
Global Middle Released

Introduction To Game Design & Programming

mouse_check button released(mb_left)

{

audio play sound(snd bounce,1l,false);

}

The equivalent event for the above code would be Mouse Left Released Event, and the code would be:

audio play sound(snd bounce,l,false);

Destroy Event

Code/actions in this event will be executed when the object is destroyed. It's great for changing global
variables or playing a sound when it's destroyed. For example, when an enemy object loses all its health
and you destroy the object, this can also be achieved in code:

instance_destroy() ;
In the Destroy Event you could put:

score+=10;

Note: It is worth noting that Destroy Events don't run upon changing rooms. This has
several knock-on effects involving on-death effects and cleanup.

Alarm Event
Code / actions here will be executed when the chosen alarm reaches 0.

Alarms lose 1 for each step of the game. The default room speed is 30 frames per second. So an alarm set
for 60 will trigger after 2 seconds. You can set an alarm using GML and then use an Alarm Event to execute
code when the alarm triggers.

For example, you could use this as controller for a splash_screen to show a sprite for 5 seconds: In the
Create Event:

alarm[0]=room_ speed*5;
score=0;
lives=5;
global.level=1;

And in an AlarmO0 Event:

room goto (room menu) ;

264

Introduction To Game Design & Programming
Alarm Events must be present for the corresponding alarm[] to count down.

Draw Event

Your code actions for drawing should be put here, drawing text, shapes, or sprites.

Note: It should be noted that wherever possible, only drawing code should be placed in a

Draw Event.

If you have any code in a Draw Event you will also have to force the object draw the sprite, for example,
using it in the simplest form:

draw_self();
You could add to this, for example, which would draw the score at the top of the screen with the caption
Score :, and which ever sprite is currently assigned to the instance of that object:

draw_text(10,10,"Score "+string(score));
draw_self () ;

Note: The above code will draw the text first, then the sprite. If you want the text over
the sprite, just change the order.

Step Event

Code/actions here are executed every step (frame). At the default room speed this will be 30 frames per
second. This is most likely where you'll use the most code. An example would be check the value of health
and reduce lives accordingly, going to room room_game_over if the player is out of lives:

if health<O0
{

lives-=1;
health=100;
}

if lives==0 room goto(room game over); }

There may be times that you want to execute code before or after a main Step Event. For this you can use
Begin Step or End Step accordingly.

Key Events

265

Introduction To Game Design & Programming

Will execute code/actions if a Key Press Event executes code or actions if the specified key is being pressed
/ released. In this book keypress events will be mostly checked using GML code. However you could use Key
Press Events. An example would be creating moving an object 4 pixels right each time the left arrow key is
pressed. To imphesise, the following code will execute once each time the right arrow is pressed:

if (keyboard check(vk_right))
{
x+=5;

Note: The one-time nature of Key press and Key release events: they will not execute
each step, instead only when the key is pressed or released.

If you want to make code execute every step while the key is being held down use:

if (keyboard check(vk_right))
{

x+=5;
}

You can of course use Keyboard Events, as shown in Figure A_6_2:

266

Introduction To Game Design & Programming

Add Event)
Create

Destroy

Clean Up

e ¥ ED

Step

Alarm

1©)

Draw

Moss=n
Key Down
Key Pressed

Key Up

v
40
0o
10
a0
s

Gesture
Collision
Other

Asynchronous)

Figure A_6_2: Keyboard events

Note: There is nothing wrong in using keyboard events over gml code. In fact, sometimes
it is preferable as it keeps your project more organized.

Collision Event

Code in this section is executed if two instances (or their masks) collide. For this purpose of this book the
Collision Event will be used more often than GML code, though GML does give more flexibility in how you
process collisions.

You select which object to test for a collision with, and any code inside that event will be executed if a
collision is taking place.

An example would be setting up a collision between obj_player and obj_enemy, as shown in Figure
A 6 3

267

Introduction To Game Design & Programming

4 Object: obj_player) 4 4 Events

Name:
obj_player
Sprite:

spr_p1
32x32
Collision Mask:

Same As Sprite

Visible Solid

Persistent Uses Physics Create

Destroy

Events
Clean Up

Parent Step

Alarm

B o¥ B0

Physics
Draw

Variable Definitions Mouse
Key Pressed
Key Up

Gesture

O+ 0
852 85 [0 @

ke
+

>
>
>
>
Key Down >
>
>
>
>

Collision

Other > B obj_enemy

obj_player

Tl -

Asynchronous »

Figure A_6_3: Setting up a collision event
In this event only, other can refer to the colliding instance.

For example, based on Figure A_6_3 above, the code could be that below which would reduce the hp of
obj_enemy by 1:

with (other) hp-=1;
Then take one point off of the colliding instance's hp value for each frame (step).

Draw GUI Event
268

Introduction To Game Design & Programming

This event allows you to draw relative to the screen. It is mainly used for HUD elements, such as displaying
the score, lives, bonuses, etc.

This draws independent of any view, so if the view moves, the GUI will not.

In most uses the GUI draws elements that cannot interact with the player.

269

Introduction To Game Design & Programming

Basic Projects

e A) Create a moveable player. Draw the health of a player as text in red above a player when health is less than
20. When over 20 draw in white. Set it up so P and L change the value of health.

e B) Make some text change colour, at random, each time the space bar is pressed.

e () Create an object that changes colour when the mouse is over and when clicked on the object. Use a different sub
image for each colour.

Advanced Project

¢ D) Create a mini game that randomly displays three objects that move in random directions when created and when
clicked by the player. If objects go off side of screen, wrap around screen. Player is to click objects to get points and
display points onscreen.

270

